C++线性时间的排序算法分析(2)
基数排序(Radix Sort)是一种非比较型排序算法,它将整数按位数切割成不同的数字,然后按每个位分别进行排序。基数排序的方式可以采用MSD(Most significant digital)或LSD(Least significant digital),MSD是从最高有效位开始排序,而LSD是从最低有效位开始排序。
当然我们可以采用MSD方式排序,按最高有效位进行排序,将最高有效位相同的放到一堆,然后再按下一个有效位对每个堆中的数递归地排序,最后再将结果合并起来。但是,这样会产生很多中间堆。所以,通常基数排序采用的是LSD方式。
LSD基数排序实现的基本思路是将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。需要注意的是,对每一个数位进行排序的算法必须是稳定的,否则就会取消前一次排序的结果。通常我们使用计数排序或者桶排序作为基数排序的辅助算法。基数排序过程动画演示:Radix Sort
C++实现(使用计数排序)如下:
/************************************************************************* > File Name: RadixSort.cpp > Author: SongLee ************************************************************************/ #include<iostream> using namespace std; // 找出整数num第n位的数字 int findIt(int num, int n) { int power = 1; for (int i = 0; i < n; i++) { power *= 10; } return (num % power) * 10 / power; } // 基数排序(使用计数排序作为辅助) void RadixSort(int A[], int len, int k) { for(int i=1; i<=k; ++i) { int C[10] = {0}; // 计数数组 int B[len]; // 结果数组 for(int j=0; j<len; ++j) { int d = findIt(A[j], i); C[d] += 1; } for(int j=1; j<10; ++j) C[j] = C[j] + C[j-1]; for(int j=len-1; j>=0; --j) { int d = findIt(A[j], i); C[d] -= 1; B[C[d]] = A[j]; } // 将B中排好序的拷贝到A中 for(int j=0; j<len; ++j) A[j] = B[j]; } } // 输出数组 void print(int A[], int len) { for(int i=0; i<len; ++i) cout << A[i] << " "; cout << endl; } // 测试 int main() { int A[8] = {332, 653, 632, 5, 755, 433, 722, 48}; print(A, 8); RadixSort(A, 8, 3); print(A, 8); return 0; }
基数排序的时间复杂度是 O(k·n),其中n是排序元素个数,k是数字位数。注意这不是说这个时间复杂度一定优于O(nlgn),因为n可能具有比较大的系数k。
另外,基数排序不仅可以对整数排序,也可以对有多个关键字域的记录进行排序。例如,根据三个关键字年、月、日来对日期进行排序。
- 上一篇:C++实现第K顺序统计量的求解方法
- 下一篇:C++快速排序的分析与优化详解