Python性能优化的20条建议(2)
使用a,b=b,a而不是c=a;a=b;b=c;来交换a,b的值,可以快1倍以上。
使用if is
a = range(10000) %timeit -n 100 [i for i in a if i == True] %timeit -n 100 [i for i in a if i is True] 100 loops, best of 3: 531 µs per loop 100 loops, best of 3: 362 µs per loop
使用 if is True 比 if == True 将近快一倍。
使用级联比较x < y < z
x, y, z = 1,2,3 %timeit -n 1000000 if x < y < z:pass %timeit -n 1000000 if x < y and y < z:pass 1000000 loops, best of 3: 101 ns per loop 1000000 loops, best of 3: 121 ns per loop
x < y < z效率略高,而且可读性更好。
while 1 比 while True 更快
def while_1(): n = 100000 while 1: n -= 1 if n <= 0: break def while_true(): n = 100000 while True: n -= 1 if n <= 0: break m, n = 1000000, 1000000 %timeit -n 100 while_1() %timeit -n 100 while_true() 100 loops, best of 3: 3.69 ms per loop 100 loops, best of 3: 5.61 ms per loop
while 1 比 while true快很多,原因是在python2.x中,True是一个全局变量,而非关键字。
使用**而不是pow
%timeit -n 10000 c = pow(2,20) %timeit -n 10000 c = 2**20 10000 loops, best of 3: 284 ns per loop 10000 loops, best of 3: 16.9 ns per loop
**就是快10倍以上!
使用 cProfile, cStringIO 和 cPickle等用c实现相同功能(分别对应profile, StringIO, pickle)的包
import cPickle import pickle a = range(10000) %timeit -n 100 x = cPickle.dumps(a) %timeit -n 100 x = pickle.dumps(a) 100 loops, best of 3: 1.58 ms per loop 100 loops, best of 3: 17 ms per loop
由c实现的包,速度快10倍以上!
使用最佳的反序列化方式
下面比较了eval, cPickle, json方式三种对相应字符串反序列化的效率:
import json import cPickle a = range(10000) s1 = str(a) s2 = cPickle.dumps(a) s3 = json.dumps(a) %timeit -n 100 x = eval(s1) %timeit -n 100 x = cPickle.loads(s2) %timeit -n 100 x = json.loads(s3) 100 loops, best of 3: 16.8 ms per loop 100 loops, best of 3: 2.02 ms per loop 100 loops, best of 3: 798 µs per loop
可见json比cPickle快近3倍,比eval快20多倍。
使用C扩展(Extension)
目前主要有CPython(python最常见的实现的方式)原生API, ctypes,Cython,cffi三种方式,它们的作用是使得Python程序可以调用由C编译成的动态链接库,其特点分别是:
CPython原生API: 通过引入Python.h头文件,对应的C程序中可以直接使用Python的数据结构。实现过程相对繁琐,但是有比较大的适用范围。
ctypes: 通常用于封装(wrap)C程序,让纯Python程序调用动态链接库(Windows中的dll或Unix中的so文件)中的函数。如果想要在python中使用已经有C类库,使用ctypes是很好的选择,有一些基准测试下,python2+ctypes是性能最好的方式。
Cython: Cython是CPython的超集,用于简化编写C扩展的过程。Cython的优点是语法简洁,可以很好地兼容numpy等包含大量C扩展的库。Cython的使得场景一般是针对项目中某个算法或过程的优化。在某些测试中,可以有几百倍的性能提升。
cffi: cffi的就是ctypes在pypy(详见下文)中的实现,同进也兼容CPython。cffi提供了在python使用C类库的方式,可以直接在python代码中编写C代码,同时支持链接到已有的C类库。
使用这些优化方式一般是针对已有项目性能瓶颈模块的优化,可以在少量改动原有项目的情况下大幅度地提高整个程序的运行效率。
并行编程
因为GIL的存在,Python很难充分利用多核CPU的优势。但是,可以通过内置的模块multiprocessing实现下面几种并行模式:
多进程:对于CPU密集型的程序,可以使用multiprocessing的Process,Pool等封装好的类,通过多进程的方式实现并行计算。但是因为进程中的通信成本比较大,对于进程之间需要大量数据交互的程序效率未必有大的提高。
- 上一篇:跟老齐学Python之模块的加载
- 下一篇:简单的Python抓taobao图片爬虫