C语言实现的排列组合问题的通用算法、解决方法(2)
order[k]++; // 在当前位置选择新的数字
if(order[k] == n) // 当前位置已无数字可选,回溯
{
order[k--] = 0;
continue;
}
if(k < m) // 更新当前位置的下一位置的数字
{
order[++k] = order[k-1];
continue;
}
if(k == m)
flag = true;
}
delete[] order;
return count;
}
下面是测试以上函数的程序:
int main()
{
const int N = 4;
const int M = 3;
int a[N];
for(int i=0;i<N;i++)
a[i] = i+1;
// 回溯方法
cout << combine(a,N,3) << endl;
// 递归方法
int b[M];
combine(a,N,M,b,M);
return 0;
}
由上述分析可知,解决组合问题的通用算法不外乎递归和回溯两种。在针对具体问题的时候,因为递归程序在递归层数上的限制,对于大型组合问题而言,递归不是一个好的选择,这种情况下只能采取回溯的方法来解决。
n个数的全排列问题相对简单,可以通过交换位置按序枚举来实现。STL提供了求某个序列下一个排列的算法next_permutation,其算法原理如下:
1. 从当前序列最尾端开始往前寻找两个相邻元素,令前面一个元素为*i,后一个元素为*ii,且满足*i<*ii;
2. 再次从当前序列末端开始向前扫描,找出第一个大于*i的元素,令为*j(j可能等于ii),将i,j元素对调;
3. 将ii之后(含ii)的所有元素颠倒次序,这样所得的排列即为当前序列的下一个排列。
其实现代码如下:
template <class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first, BidirectionalIterator last)
{
if (first == last) return false; // 空範圍
BidirectionalIterator i = first;
++i;
if (i == last) return false; // 只有一個元素
i = last; // i 指向尾端
--i;
for(;;)
{
BidirectionalIterator ii = i;
--i;
// 以上,鎖定一組(兩個)相鄰元素
if (*i < *ii) // 如果前一個元素小於後一個元素
{
BidirectionalIterator j = last; // 令 j指向尾端
while (!(*i < *--j)); // 由尾端往前找,直到遇上比 *i 大的元素
iter_swap(i, j); // 交換 i, j
reverse(ii, last); // 將 ii 之後的元素全部逆向重排
return true;
}
if (i == first) // 進行至最前面了
{
reverse(first, last); // 全部逆向重排
return false;
}
}
}
下面程序演示了利用next_permutation来求取某个序列全排列的方法:
int main()
{
int ia[] = {1,2,3,4};
vector<int> iv(ia,ia+sizeof(ia)/sizeof(int));
- 上一篇:算法之排列算法与组合算法详解
- 下一篇:全排列算法的原理和实现代码





