龙盟编程博客 | 无障碍搜索 | 云盘搜索神器
快速搜索
主页 > 软件开发 > C/C++开发 >

素数判定算法的实现

时间:2014-08-30 02:21来源:网络整理 作者:网络 点击:
分享到:
这篇文章主要介绍了素数判定算法的实现,素数判定问题是一个非常常见的问题,本文介绍了常用的几种判定方法,需要的朋友可以参考下

1. 素数判定问题

素数判定问题是一个非常常见的问题,本文介绍了常用的几种判定方法。

2. 原始算法

素数的定义是,除了能被1和它本身整除而不能被其他任何数整除的数。根据素数定义 只需要用2到n-1去除n,如果都除不尽,则n是素数,否则,只要其中有一个数能整除则n不是素数。

复制代码 代码如下:

bool is_primer1(int num) {
 
  int i;
 
  for(i = 2; i < num; i++) {
 
    if(num % i == 0) {
 
      return true;
 
    }
 
  }
 
  return false;
 
}

3. 改进算法

n不是素数,则n可表示为a*b,其中2<=a<=b<=n-1,则a,b中必有一个数满足:1<x<=sqrt(n),因而,只需要用2~sqrt(n)去除n,这样就得到一个复杂度为O(sqrt(n))的算法

复制代码 代码如下:

bool is_primer2(int num) {
 
  int i;
 
  int upper = sqrt(num);
 
  printf("primer2:%d\n", upper);
 
  for(i = 2; i <= upper; i++) {
 
    if(num % i == 0) {
 
      return true;
 
    }
 
  }
 
  return false;
 
}

4. 筛选算法

更高效地素数判断方法应该是将素数预先保存到一个素数表中,当判断一个数是否为素数时,直接查表即可。这种方法需要解决两个问题:

(1) 怎样快速得到素数表?(采用筛选方法)
(2) 怎样减少素数表的大小?(采用位图数据结构)

对于1到n全部整数,逐个判断它们是否是素数,找出一个非素数,就把它挖掉,最后剩下的就是素数。具体方法是:

<1> 定义is_primer[i] = true;
<2> 从2开始,依次遍历整个is_primer(直到sqrt(N)),如果is_primer[i]=true,则is_primer[n*i]=false
如1,2,3,4,5,6,7,8,9,10,则
从2开始遍历:
is_primer[2]=true,则is_primer[4]= is_primer[6]= is_primer[8]= is_primer[10]= true
is_primer[3]=true,则is_primer[6]= is_primer[9]= true
为了减少内存使用率,算法使用了位图数据结构,关于位图,可参考:http://www.jb51.net/article/54439.htm

复制代码 代码如下:

bool load_primer_table1() { //保存素数表
 
  int i;
 
  for(i = 1; i < INT_MAX; i++) {
 
    if(i % 2 != 0 //偶数一定不是素数
 
      && is_primer2(i)) {
 
      set(i);
 
    }
 
  }
 
}
 
bool load_primer_table2() {//另一种更快的方法保存素数表
 
  int i, j;
 
  for(i = 1; i <= INT_MAX; i++) {
 
    if( i % 2) {
 
      set(i);
 
    } else {
 
      clear(i);
 
    }
 
  }
 
  int upper = sqrt(INT_MAX);
 
  for(i = 1; i <= upper; i++) {
 
    if(test(i)) {
 
      for(j = i + i; j < INT_MAX; j += i)
 
        set(i);
 
    }
 
  }
 
}
 
bool is_primer3(long num) { //查表判断是否为素数
 
  if(test(num))
 
    return true;
 
  return false;
 
}

5. 优化的筛选算法

(1) 存储方式优化

精彩图集

赞助商链接